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Abstract The availability of genomic resources can facil-

itate progress in plant breeding through the application of

advanced molecular technologies for crop improvement.

This is particularly important in the case of less researched

crops such as cassava, a staple and food security crop for more

than 800 million people. Here, expressed sequence tags

(ESTs) were generated from five drought stressed and well-

watered cassava varieties. Two cDNA libraries were devel-

oped: one from root tissue (CASR), the other from leaf, stem

and stem meristem tissue (CASL). Sequencing generated 706

contigs and 3,430 singletons. These sequences were com-

bined with those from two other EST sequencing initiatives

and filtered based on the sequence quality. Quality sequences

were aligned using CAP3 and embedded in a Windows

browser called HarvEST:Cassava which is made available.

HarvEST:Cassava consists of a Unigene set of 22,903 quality

sequences. A total of 2,954 putative SNPs were identified. Of

these 1,536 SNPs from 1,170 contigs and 53 cassava geno-

types were selected for SNP validation using Illumina’s

GoldenGate assay. As a result 1,190 SNPs were validated

technically and biologically. The location of validated SNPs

on scaffolds of the cassava genome sequence (v.4.1) is pro-

vided. A diversity assessment of 53 cassava varieties reveals

some sub-structure based on the geographical origin, greater

diversity in the Americas as opposed to Africa, and similar

levels of diversity in West Africa and southern, eastern and

central Africa. The resources presented allow for improved

genetic dissection of economically important traits and the

application of modern genomics-based approaches to cassava

breeding and conservation.

Background

Cassava, Manihot esculenta Crantz. (2n = 36) is a highly

adaptable starchy root crop and the primary staple food for
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more than 800 million people, largely in sub-Saharan Africa

(Lebot 2009). Apart from being a staple food it is also a source

of cash income from fresh and processed food, the production

of starch-based products, biofuels and animal feed (Dixon

et al. 2003; Sriroth et al. 2000; Tonujari 2004). Cultivated in

tropical and sub-tropical regions of Asia, Latin America and

Africa production reached 233 million tons in 2008 (FAO

2008) with over 50% of this being in Africa. Cassava is often

grown in marginal environments with erratic rainfall, poor

soils and under low intensity management (El Sharkawy

2004). The difference between the potential yield and the

average farmer’s yield is more than sixfold, indicating tre-

mendous scope for yield improvement (Lebot 2009).

National and international cassava breeding efforts have

made significant impact on cassava production both in

terms of disease tolerance, yield and quality improvements.

Breeding for these diversified uses under adverse climatic

conditions is a challenge, particularly as cassava is a highly

heterogeneous and heterozygous vegetatively propagated

crop with variable flowering, low seed set, and a long

breeding cycle (Jennings and Iglesias 2001). It has been

recognised that the application of advanced technologies

could substantially increase the efficiency and success of

orphan crop breeding programs (Nelson et al. 2004). This

does however rely on the availability of genomic tools,

including molecular markers.

In recent years, the availability of genomic resources for

cassava has increased substantially, most notable through the

sequencing of the cassava genome (http://www.phytozome.

net/cassava). cDNAs (generally expressed sequence tags;

ESTs) can assist with gene discovery, the study and charac-

terisation of plant expressed genes and the isolation of

nucleotide sequences of genes with known function (Lopez

et al. 2004; Luo et al. 2005). Anderson et al. (2004) provides

an overview of EST resources available for cassava and other

Euphorbiaceae species. Since then additional EST resources

have emerged for cassava (Lokko et al. 2007; Sakurai et al.

2007), although the Unigene set is still limited compared to

some other crops such as for maize and the model plant

Arabidopsis in which over 2 million and 1.5 million ESTs are

available, respectively (http://www.ncbi.nlm.nih.gov/dbE

ST/dbEST_summary.html).

The availability of molecular markers is critical if

molecular tools are to be applied to cassava breeding. In

cassava, the majority of markers that are widely used are

simple sequence repeat (SSR) loci (Chavarriaga-Aguirre

et al. 1998; Kunkeaw et al. 2010; Mba et al. 2001; Raji et al.

2009; Sraphet et al. 2011; Tangphatsornruang et al. 2008),

although Diversity Array Technology (DArT) markers are

available (Xia et al. 2005). A high density of single nucle-

otide polymorphic (SNP) markers would dramatically

facilitate progress in cassava genomics and breeding. SNPs

and small insertions and deletions (indels) represent the

most frequent form of naturally occurring genetic variation

in populations (Cho et al. 1999). SNPs are generally biall-

elic due to their low mutation rate and evolutionary stability

rendering them less informative than multi-allelic SSRs

(Syvänen 2001). This drawback, however, is offset by their

suitability to ultra-high throughput genotyping techniques

(Appleby et al. 2009) and their sheer abundance, thus

making them the marker of choice for dense genotyping

(Rafalski 2002). In addition, the utilisation of multi-SNP

haplotypes can offset the relatively low information content

of single SNP loci (Brumfield et al. 2003).

Sakurai et al. (2007) reported the identification, but no

details, of 2,356 putative SNPs; through the University of

Maryland’s Cassava Genome Database 384 and 371,

putative SNP containing sequences derived from genes and

the cassava physical map, respectively, were made avail-

able. Apart from these studies the analysis of DNA

sequence variation in cassava has been mainly confined to

single genes or DNA fragments with the goal of defining

gene structure, function or evolutionary relationships.

These studies include Kawuki et al. (2009) who studied

sequence diversity in nine genes involved in cyanogenesis,

starch metabolism, stress and/or defense related pathways

and identified 26 SNPs; Lopez et al. (2005) exploited ESTs

to detect SNPs in five cultivars of cassava.

The large amount of plant sequence data available in

public databases represents a rich resource for SNP dis-

covery using bioinformatics approaches (Chao et al. 2009).

Several methods for identifying SNP markers from EST

sequence databases have been reported (Picoult-Newberg

et al. 1999). The use of EST databases has the advantage of

possibly identifying SNPs associated with changes in

phenotype. EST databases have been mined for large-scale

SNP discovery in several species including humans (Garg

et al. 1999), Arabidopsis (Schmid et al. 2003), maize

(Batley et al. 2003) and sugarcane (Grivet et al. 2002).

The objectives of this study were to (1) expand the

available ESTs in relation to drought response in cassava,

(2) consolidate quality cassava sequences into an EST

database, (3) identify a substantial number of putative SNPs

from aligned ESTs, (4) validate putative SNPs in a high-

throughput genotyping platform in cultivated cassava and

(5) use gene-based SNPs to elucidate genetic relationships

and diversity of cassava varieties on a regional basis.

Methods

Normalised cDNA library preparation, EST sequencing

and characterisation

Twelve plants of four cassava farmer varieties from Malawi

(‘Sauti’, ‘Gomani’, ‘Mbundumali’ and ‘Mkondezi’) and
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TME 1 from the International Institute of Tropical

Agriculture (IITA) were grown in pots from stem cut-

tings. These varieties show varying responses to drought

including typical susceptibility, rapid leaf loss and stay-

green. Plants were grown in a screenhouse at Chitedze

Research Station, Malawi, under normal light and tem-

perature regimes, in a sandy-loam soil. No additional

fertilizer was provided. Pots were randomly split into

two treatments of six plants. Ten weeks post planting

one treatment received limited irrigation to induce

drought stress. Once significant wilting was observed,

3 weeks post the initiation of drought stress, root, leaf,

stem and stem meristem tissues were removed from each

variety under each treatment and frozen in liquid nitro-

gen before being stored in a -80�C freezer. Samples of

(1) root, (2) leaf and (3) stem/stem meristem tissue from

drought stressed and non-stressed plants were pooled for

all cultivars on a weight basis. RNA was extracted from

each of these three pools using Concert
TM

Plant RNA

Reagent (Invitrogen
TM

by Life Technologies
TM

) following

manufacturer’s protocol. After extraction the leaf and

stem meristem RNA was pooled on a 1:1 quantity basis.

Evrogen constructed two normalised cDNA libraries

from these samples; a leaf/stem meristem library (CASL)

and a root library designated (CASR). Both libraries had

titers of approximately one million clones. Sequencing

was performed at The Institute of Genomic Research

(TIGR).

Data analysis

Trace files were assessed for quality using Phred and Cross

match. Poor quality sequences were discarded. To assign a

putative function to the ESTs, specific Uniprot identifiers

were assigned to cassava Unigene sequences using Uni-

prot/Arabidopsis database. GO annotations were retrieved

using the GORetriever tool from AgBase (http://www.

agbase.msstate.edu) (McCarthy et al. 2006). A summary of

GO terms for each of the three main categories (biological

process, molecular function and cellular component) was

obtained using a plant specific GO Slim ontology using

GOSlimViewer in AgBase (McCarthy et al. 2006).

HarvEST database and putative SNP identification

Trace files of EST sequences from five cDNA libraries

were used to compile a database of high quality

sequences. These included 18,633 EST sequences from

CV01 and CV02 (Anderson et al. 2004; Lokko et al.

2007), 34,955 EST sequences (Sakurai et al. 2007) and

5,019 EST sequences from CASL and CASR (this arti-

cle). The full-length cDNA library from Sakurai et al.

(2007) was derived from one cassava variety from

Thailand (MTAI16) under normal, heat, drought, high

aluminium/low pH and post-harvest physiological dete-

rioration conditions. cDNA libraries from Anderson et al.

(2004) were derived from dehydration stressed and

control well-watered tissues of three varieties of West

African origin; TME117, TME3 and TMS30572. Trace

files were obtained from EST developers or NCBI Trace

DB using a query string species code ‘Manihot escu-

lenta’. These were assessed for quality using Phred and

Cross match exactly as in Close et al. (2004). Poor

quality sequences were discarded. Remaining sequences

were aligned using CAP3 using settings appropriate for

SNP detection (Close et al. 2009). The EST assembly

was embedded into a database and packaged within the

HarvEST software to form a Windows browser called

HarvEST:Cassava (version 1.00–1.06). Specific Uniprot

identifiers were assigned to cassava Unigene sequences

using Uniprot/Arabidopsis database. GO annotations

were retrieved and a summary of GO terms was derived

as previously described.

SNPs were identified from sequence alignment with

CAP3 as described above. Those with a minimum of two

supporting ESTs for each allele were classified as 2E,

whereas those with a minimum of three supporting ESTs

for each allele were classified as 3E. This was continued up

to the maximum of 6E. SNPs were named as follows: Me

for M. esculenta Crantz., MEF for the first author of this

article, c. for complementary DNA, followed by a unique

number e.g. Me.MEF.c.0545.

SNP validation

For SNP validation purposes 53 cultivated cassava

(M. esculenta Crantz.) accessions were genotyped using

1,536 putative SNPs using Illumina’s GoldenGate assay

(Illumina Inc., San Diego, CA) at The Southern California

Genotyping Consortium (SCGC), University of California

Los Angeles (UCLA) (http://scgc.genetics.ucla.edu)

(Table 1). The genotype set included 22 accessions from the

Americas, 23 accessions from West Africa, 11 accessions

from southern, eastern and central (SEC) Africa and two

accessions from Asia. Putative duplicate accessions were

also included in the set from the IITA Genebank, to deter-

mine the potential of high-density genotyping to identify

duplicates in cassava germplasm collections. These acces-

sions were TMe539 and TMe3187, ‘Kaleso’ and ‘Nami-

konga’, TMe589 and TMe3209, and TMe153 and TMe2929.

Three accessions from West Africa were of unknown

identity.

A set of 1,536 SNPs were selected from all putative

SNPs identified. Initially SNPs with an Illumina primer

score of 0.6 and above were considered. This provides a

quality score for the design of Illumina primers. In
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addition, each putative SNP selected had to be at least

60 bp from the nearest SNP. Initially SNPs classified as 3E

and higher were selected, then 2E SNPs were selected so

that the maximum number of unigenes were represented.

SNP olicode primers were designed using the Assay

Design Tool (ADT) (Illumina, Inc.).

Raw data were transformed to genotype calls using

Illumina’s BeadStudio version 3 with the genotyping

module. Cassava is highly heterozygous so there was no

need to include any ‘synthetic heterozygotes’ to anchor

heterozygote cluster positions to enable the identification of

true heterozygotes, as in other highly inbred crops such as

barley (Close et al. 2009). The spatial positions of hetero-

zygote and homozygote data clusters were confined to areas

of high certainty so that data points with less certainty fell

outside the boundaries of heterozygotes and homozygotes

and were scored as ‘no call’. Genotype calls were exported

as spreadsheets from BeadStudio and converted to create

input files for PowerMarker v3.25 (Liu and Muse 2005) and

DARwin5 (Perrier and Jacquemoud-Collet 2006).

Initially loci with more than 85% missing data were

deleted from the analysis. Allele frequencies were calcu-

lated using PowerMarker v3.25 (Liu and Muse 2005) and

monomorphic loci recorded. The remaining SNPs were

considered validated for use in cultivated cassava. Results

from the 53 germplasm selections were used to estimate

minor allele frequencies (MAF). Observed heterozygosity,

gene diversity (expected heterozygosity) and polymor-

phism information content (PIC) were calculated on a per

locus basis, using PowerMarker v. 3.25 (Liu and Muse

2005). Validated SNPs were located on scaffolds of the

cassava genome (v.4.1.) using BLASTN with the short

Illumina SNP primer as a query. The length of the query

and subject matches were compared to determine the

length of the SNP region in the cassava genome, and to

determine whether any insertions exist. In the case of a

regular SNP, the 122 bp SNP sequence would correspond

to the same length on a cassava scaffold, however, if there

is an insertion in the genome within the SNP primer

sequence, the corresponding region on the cassava genome

would be longer.

Table 1 Cultivated cassava germplasm used for SNP validation

ID Other

identifier

Country

of origin

Region

of origin

AR37-80 Unknown Americas

AR40-6 Unknown Americas

MCOL 1734 Colombia Americas

VEN77 Venezuela Americas

CIAT6 BRA206 Brazil Americas

CIAT56 COL2459 Colombia Americas

CIAT80 GUA59 Guatemala Americas

CIAT819 BRA200 Brazil Americas

CIAT322 BRA125 Brazil Americas

CIAT834 BRA436 Brazil Americas

CIAT857 BRA785 Brazil Americas

CIAT1226 BRA1016 Brazil Americas

CIAT1212 BRA842 Brazil Americas

CIAT880 BRA990 Brazil Americas

CIAT1303 COL233 Colombia Americas

CIAT391 ARG12 Argentina Americas

CIAT567 PAR23 Paraguay Americas

CIAT543 CR19 Costa Rica Americas

CIAT694 COL2638 Colombia Americas

CIAT584 PER458 Peru Americas

CIAT1135 USA7 USA Americas

CIAT1370 BRA1001 Brazil Americas

CIAT759 TAI1 Thailand Asia

CIAT558 MAL60 Malaysia Asia

Nachinyaya Tanzania SEC Africa

Kiroba Tanzania SEC Africa

NDL06/132 Tanzania SEC Africa

Muzege Tanzania SEC Africa

TMe3187 Bao (T1) Uganda SEC Africa

TMe3288 Ex Mwachande Kenya SEC Africa

TMe539 Bao (T1) Uganda SEC Africa

Kaleso Kenya SEC Africa

Albert Tanzania SEC Africa

Namikonga Tanzania SEC Africa

I96/1089A Unknown West Africa

Unknown1 Unknown West Africa

TME7 Unknown West Africa

I96/1632 Unknown West Africa

TMS30572 Unknown West Africa

97/3200 Unknown West Africa

94/0026 Unknown West Africa

I92/0326 Unknown West Africa

TMe5 Bagi Wawa Nigeria West Africa

Unknown2 Nigeria West Africa

TMe153 82/00290 Cameroon West Africa

TMe3002 TOMA 36 Togo West Africa

TMe3209 Bassa Girl Liberia West Africa

Table 1 continued

ID Other

identifier

Country

of origin

Region

of origin

TMe3445 Kolia 3 Guinea Conakry West Africa

TMe3082 Toma 175 Togo West Africa

TMe2929 82/00290 Cameroon West Africa

TMe125 Ikpaki Nigeria West Africa

Unknown3 Unknown West Africa

TMe589 Bassa Girl Liberia West Africa
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Genetic diversity assessment

To provide insights into the genetic relationships of cassava

from SEC Africa, Asia, West Africa and the Americas the

simple matching coefficient was used to calculate a dissim-

ilarity matrix with a pairwise variable deletion of 70%.

Weighted neighbour-joining was used to construct a tree

with 1,000 bootstrap iterations. All analyses were performed

using DARwin5 (Perrier and Jacquemoud-Collet 2006).

Allele frequencies were calculated on a regional basis using

PowerMarker v3.25 (Liu and Muse 2005), and those with

allele frequency differences C0.5 among regions (C0.45 in

the case of ‘Americas’ and ‘Africa’), showing maximum

discrimination among regions, were identified. Mean

observed heterozygosity (Ho) in the entire population and

Nei’s unbiased estimate of gene diversity (Nei 1987) within

the regions, ‘Americas’, and ‘Africa’ and sub-regions ‘West

Africa’ and ‘Southern eastern and central Africa’ were cal-

culated using PowerMarker v3.25 (Liu and Muse 2005).

Results

EST development and characterisation

A total of 5,046 fragments were successfully sequenced

from two cDNA libraries with 2,396 from the CASL

library and 2,650 from the CASR library. All EST data are

publically available through the National Center for Bio-

technology Information [NCBI, Bethesda, MD, USA;

GenBank dbEST accession nos FF379626 to FF382021

(CASL) and FF534207 to FF536856 (CASR)]. This com-

prised 706 contigs and 3,430 singletons.

Of the 2,404 sequences from CASR that had UniProt

accession identifiers and that were subjected to GO anno-

tation, putative functions were assigned to 1,291 unique

sequences. A total of 3,485 annotations contributed to

‘biological process’, 3601 to ‘metabolic function’ and

1,968 to ‘cellular component’. Of the 2,265 sequences from

CASL that had UniProt accession identifiers and that were

subjected to GO annotation, putative functions were

assigned to 1,285 sequences. A total of 3,337 GO annota-

tions were assigned to ‘biological process’, 3,656 were

assigned to ‘metabolic function’ and 1,865 to ‘cellular

component’. GO annotations and GO Slim summaries for

CASR and CASL are provided as supplementary material

in Online Resource 1.

A cassava EST database

HarvEST:Cassava (http://harvest.ucr.edu/ and http://

harvest.ucr.edu/HCassava106.exe) consists of 58,607 ESTs

from 42,970 clones, assembled into 9,471 contigs and 13,432

singletons providing a Unigene set of 22,903 sequences. The

contribution to HarvEST:Cassava by cDNA library is pro-

vided in Table 2. This includes 2,383 sequences from CASL

and 2,636 sequences from CASR. Through this database it is

possible to conduct a number of searches, including a search

of ESTs by expression pattern, select a sequence or

sequences using GenBank #, EST Name and Unigene #, and

use NCBI blast for all protein sequences (blastx nr), all plant

ESTs (tblastx est_others Embryophyta [orgn]) and cassava

M01 ESTs blastn. The HarvEST:Cassava Unigene set with

annotations from UniProt and the Arabidopsis database is

provided in Online Resource 2.

From the Unigene set of 22,903 sequences 20,027 were

assigned with specific UniProt identifiers using a cut-off of

e-4. As a result of GO Slim annotation 8,501 were clas-

sified as ‘cellular components’, 23,129 were ‘metabolic

function’ and 20,787 were ‘biological processes’. Online

Resource 2 provides details of GO annotations of the

HarvEST:Cassava Unigene set and GO Slim annotation

summaries.

SNP identification, characterisation and annotation

After low-quality masking and intron avoidance steps

3,380 putative SNPs were identified from the Har-

vEST:Cassava assembly. Of these, 426 were deleted for

having many SNPs in close proximity indicating alignment

error, and two putative SNPs also showed three alleles and

were removed. As a result of the ‘cleaning’ process 2,954

putative SNPs remained from 1,234 unigenes. Of these 92

were likely to be within 30 bp of an intron junction and 100

were within 50 bp at the end of the sequence. These SNPs

remain in the database of putative SNPs, but appropriate

annotations have been made. The database of putative

SNPs is available in Online Resource 3 and includes the

relationship of SNP source sequences to HarvEST:Cassava

unigenes.

SNPs were classified according to the minimum number

of ESTs supporting each allele. For example, 2E SNP had

two supporting ESTs for each allele, and a 3E SNP had

three ESTs supporting each allele. Of the 2,954 SNPs,

1,829 were 2E, 509 were 3E, 247 were 4E, 106 were 5E

and 263 were 6E. Confidence of being a real SNP, as

opposed to a false positive is much higher in 3E SNPs and

above than 2E SNPs. Of these SNPs, 1,653 were transitions

(C/T or G/A) and 1,301 were transversions (C/G, A/T, C/A,

or T/G). These details are provided for each putative SNP

in Online Resource 3.

SNP validation

A set of 1,536 putative SNPs, representing 1,170 contigs

from a possible 1,234 contigs, were selected for validation
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using the Illumina’s GoldenGate assay on a diverse col-

lection of 53 cassava accessions (Table 1). Of the 1,170

contigs, 861 were represented by 1 SNP, 252 were repre-

sented by 2 SNPs and 57 were represented by 3 SNPs. Of

these putative SNPs, 806 were 2E and 730 were 3E and

above. Eleven SNPs had an Illumina score below 0.6.

Details of the SNPs selected for inclusion in the Illumina

GoldenGate oligonucleotide pool assay (OPA) are pro-

vided in Online Resource 3, under column ‘Illumina

selection’.

Of the 1,536 SNPs present in the Illumina GoldenGate

assay, 178 (11.6%) failed to pass initial quality assurance

threshold of the GC score (i.e. GC score \0.2). Six SNPs

had more than 85% missing data points and were dis-

carded. Most of the remaining SNPs had GC score [0.5

leaving 1,351 that were technically validated. Of these

SNPs, 161 (12%) were monomorphic in the diversity panel

leaving 1,190 polymorphic SNPs mostly with intermediate

allele frequencies. Eighty-three SNPs had a minor allele

frequency (MAF) of less than 0.05, with a mean MAF of

0.27. MAF, observed heterozygosity, gene diversity and

PIC for each SNP locus are provided in Online Resource 4.

Mean observed heterozygosity across loci was 0.3531,

mean gene diversity was 0.3566 and mean PIC was 0.2836

with a maximum of 0.3746. Figure 1 shows the frequency

distribution of PIC values across validated loci. By using

the 121 bp SNP primer sequences, 1,116 of the 1,190

validated SNPs were located on scaffolds on the cassava

genome v. 4.1 (http://www.phytozome.net/cassava). This

data is provided in Online Resource 5. A total of 908 SNPs

were uniquely present in the genome assembly, whereas

the remaining 208 match the genome assembly at more

than one location.
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Genetic relationship among cassava varieties

The genetic structure of 53 diverse cassava accessions was

analysed using DARwin and a dendrogram displaying

genetic relationships among the cassava varieties from the

Americas, Asia, West Africa and SEC Africa produced

(Fig. 2). As expected the germplasm is mainly structured

according to geographical origin, with the majority of

varieties from the Americas clustering together. Another

group containing IITA125, IITA 3445 and TME7, amongst

others from West Africa group together. Genotypes from

SEC Africa including ‘Namikonga’, ‘Albert’, ‘Kiroba’,

IITA 3187, amongst others, also cluster together. Two

accessions from Asia are closely related to one another,

and to the group from the Americas. Several groups also

contain germplasm from both West Africa and the Amer-

icas. In addition, two accessions from SEC Africa, ‘Nac-

hinyaya’ and ‘NDL06/132’, cluster fairly closely to the

Asian accessions and CIAT 819 from Brazil. Putative

duplicate accessions included in the study to demonstrate

the effectiveness of the technology for identifying dupli-

cates within a genebank were found to be identical for all

SNPs. Two farmer varieties, Namikonga and Kaleso, from

East Africa, were also found to be identical. Observed
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heterozygosity (Ho) across all loci was 0.3531. Unbiased

estimates of gene diversity were 0.3488 for ‘Americas’

(n = 22), 0.3357 for ‘Africa’ (n = 22), 0.3230 for ‘West

Africa’ (n = 11) and 0.3221 for SEC Africa (n = 11).

Those loci providing maximum discrimination among

regions, by allele frequency, are provided in Table 3. Six

loci had allele frequency differences C0.5 between SEC

Africa and West Africa, nine between SEC Africa and the

Americas, seven between West Africa and the Americas,

and just two between Africa as a whole and the Americas.

Discussion

Genomic tools are required to make a significant

improvement in the ability to apply molecular markers to

cassava research and breeding. Here, for the first time a

substantial number (1,190) of biologically and technically

validated SNP markers are presented for cassava. The

location of the majority of the SNP markers in the cassava

genome sequence assembly are reported. In addition, new

ESTs and a searchable database of quality EST sequences

are presented. It is anticipated that these resources will

dramatically improve the quality of molecular marker

applications in cassava.

In many databases and applications, sequence quality is

a serious issue, particularly for SNP identification and

genetic linkage mapping (Close et al. 2009). Har-

vEST:Cassava version 1.06 (http://harvest.ucr.edu/ and

www.harvest-web.org) provides a valuable, easily search-

able database of high quality sequence. It is possible that

this database could be updated as new ESTs become

available. The additional EST sequences reported here

were derived from four African farmer varieties and one

improved variety. The previous published cassava ESTs

have been generated from four improved varieties

(Anderson et al. 2004; Lokko et al. 2007; Sakurai et al.

2007). From sequences in HarvEST:Cassava, 2,954 puta-

tive SNPs were identified from 1,234 unigenes. Of these,

1,536 from 1,170 unigenes were selected for validation,

leaving 1,418 SNPs still to be validated. Sequence infor-

mation is provided in Online Resource 3.

In this study the suitability of the GoldenGate SNP assay

for genotyping a diverse panel of cassava genotypes is

demonstrated. Quality genotyping data was obtained from

1,358 out of the 1,536 markers used, representing a success

rate of 89%. This rate is similar to that obtained for barley

[90% (Rostoks et al. 2005)], 89% each for soybean (Hyten

et al. 2008), potato (Anithakumari et al. 2010) and tetra-

ploid wheat (Akhunov et al. 2009). Failed assays can be

attributed to various factors, the most plausible are those

proposed by Anithakumari et al. (2010), including incor-

rectly synthesized primers as a result of incorrect sequence

data, polymorphism (including indels) in the primer

annealing site and a large intron within the SNP primer

target sequences. It is possible that initial intron avoidance

steps missed some intron junctions. Excluding markers

with large amounts of missing data, 12% of the 1,351 SNPs

were found to be monomorphic in the panel of 53 geno-

types used. This does not necessarily imply that these SNPs

failed biologically, as the genotypes from which the SNPs

were generated, were not included in the diversity panel. A

total of 1,190 SNPs were biallelic and were validated

technically and biologically. Of these 1,116 were located

on scaffolds on the cassava genome v. 4.1. To date scaf-

folds on the cassava genome v.4.1. are not anchored on a

physical map, so chromosomal locations cannot be

assigned. A recent study by Sraphet et al. (2011) anchored

Table 3 SNPs with major

differences in allele frequency

among regions

*SNPs with allele frequency

differences among regions

C 0.45; all other SNPs allele

frequency differences are C 0.5

Region SEC Africa West Africa Africa

West Africa Me.MEF.c.2351 (AG)

Me.MEF.c.3070 (CT)

Me.MEF.c.0854 (GT)

Me.MEF.c.2693 (AG)

Me.MEF.c.2353 (AC)

Me.MEF.c.3011 (AC)

Americas Me.MEF.c.0379 (AT) Me.MEF.c.2948(AG) Me.MEF.c.0047(AG)

Me.MEF.c. 2907(AG) Me.MEF.c.0047(AG) Me.MEF.c.0379(AT)

Me.MEF.c.0047(AG) Me.MEF.c.0732(AG) Me.MEF.c.0222(CT)*

Me.MEF.c.2351(AG) Me.MEF.c.1734(AG) Me.MEF.c.2747(AG)*

Me.MEF.c.0444(AT) Me.MEF.c.2490(AG) Me.MEF.c.2907(AG)*

Me.MEF.c.3011(AC) Me.MEF.c.2326(CT) Me.MEF.c.3347 (CT)*

Me.MEF.c.2951(AG) Me.MEF.c.2327(AG) Me.MEF.c.1734(AG)*

Me.MEF.c.3124(CT)

Me.MEF.c.2351(AG)
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these scaffolds using SSR markers. The fact that 208 SNP

primer sequences aligned to multiple locations on the

genome sequence could either be due to the presence of

homoeologous sequences, duplication in the cassava gen-

ome or the presence of several identical copies of some

genes. This could confound genome map positions and

pose difficulties for designing robust SNPs. Evidence that

cassava evolved from an ancient duplication of the castor

bean (Ricinus communis) is indicated through alignment of

the cassava and castor bean genomes (Steve Rounsley per

comm.). For genotyping purposes it is preferable to select

SNPs whose primers anneal to a single distinct location on

the genome and, with the genome sequence now available,

it is feasible to design such primers.

Although the sample size for a diversity assessment here

is small, results demonstrate some divergence in cassava

germplasm according to the geographical region of origin,

particularly between the Neotropics and Africa, and some

sub-structure between germplasm from SEC Africa and

West Africa. The results support previous diversity

assessments in cassava using SSR markers. From 67 SSR

loci and 283 accessions of cassava landraces from Africa

(Tanzania and Nigeria) and the Neotropics (Brazil,

Colombia, Peru, Venezuela, Guatemala, Mexico and

Argentina), Fregene et al. (2003) found a low level of

differentiation among country samples, yet sufficient dis-

tance between individual genotypes to separate African

from Neotropical accessions and to reveal a more pro-

nounced sub-structure in the African landraces. Mean

observed heterozygosity across 1,190 loci was 0.3531

which was lower than that observed by Fregene et al.

(2003) of 0.5136. The biallelic nature of SNPs as opposed

the multi-allelic nature of SSRs explains this difference.

A slightly larger gene diversity was found in the Americas

(0.3488) as opposed to that in Africa (0.3357), both with

n = 22. This larger gene diversity is consistent with a

centre of origin and domestication in the Americas. Cas-

sava was introduced into Africa, arriving at the western and

eastern coasts by Portuguese slave ships from Brazil, dur-

ing the 1500s until the 1800s (Jones 1969). Germplasm

from SEC Africa and West Africa had very similar levels

of gene diversity (0.3221 and 0.3230, respectively). Data

suggest a larger diversity assessment using the SNP

markers presented could be extremely informative for plant

breeding and conservation purposes. SSR markers, together

with isozymes and AFLP markers have previously identi-

fied duplicates in the CIAT core collection (Chavarriaga-

Aguirre et al. 1999). The SNP markers presented here are

shown to be effective in identifying duplicates within a

cassava germplasm collection. The larger number of

markers presented here, together with the advent of high-

throughput genotyping technologies, enables identification

of duplicates with greater confidence than previously pos-

sible when SSR markers were available.

Conclusions

A quantum improvement in the application of molecular

markers to cassava research and breeding requires a high

density of SNPs. Here the first published identification of a

substantial number of SNPs (1,190) in cassava that are both

technically and biologically validated is presented. Addi-

tional ESTs have been identified and compiled with

existing sequences into an easily searchable EST database

of high quality sequences, HarvEST: Cassava which should

facilitate further applications of genomics research. It is

anticipated that these resources will facilitate improved

dissection of the genetic architecture of economically

important traits and the application of modern genomics-

based breeding approaches to cassava.
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